
Cyclops: PRU Programming Framework for Precise
Timing Applications

Amr Alanwar∗, Fatima M. Anwar∗, Yi-Fan Zhang∗, Justin Pearson†, João Hespanha†, Mani B. Srivastava∗
∗University of California, Los Angeles

†University of California, Santa Barbara
{alanwar, fatimanwar, yifanz, mbs}@ucla.edu
{jppearson, hespanha}@ece.ucsb.edu

Abstract—The Beaglebone Black single-board computer is
well-suited for real-time embedded applications because its
system-on-a-chip contains two “Programmable Real-time Units”
(PRUs): 200-MHz microcontrollers that run concurrently with
the main 1-GHz CPU that runs Linux. This paper introduces
“Cyclops”: a web-browser-based IDE that facilitates the develop-
ment of embedded applications on the Beaglebone Black’s PRU.
Users write PRU code in a simple JavaScript-inspired language,
which Cyclops converts to PRU assembly code and deploys to the
PRU. Cyclops automatically configures the Beaglebone’s pinmux
controller to use common I/O peripherals like ADC and PWM.
Additionally, Cyclops includes a PRU library and Linux kernel
module for synchronizing the PRU with the processor clock,
enabling the PRU to time-stamp sensor measurements using the
Linux processor time within sub-microsecond accuracy.

I. INTRODUCTION

A. Motivation

The Beaglebone Black (BBB) single-board computer (SBC)
offers a flexible platform for robotics, sensing, and control
system applications [1]. Its 1-GHz processor, 500 MB RAM,
and 2 GB of non-volatile flash memory make it more powerful
than a “bare metal” microcontroller. Moreover, it ships with
the Debian Linux operating system and boots into a common
windows-based desktop environment. Its Texas Instruments
system-on-a-chip (SoC) includes a wide range of peripherals
like an analog-to-digital converter (ADC), general-purpose I/O
pins (GPIOs), pulse-width modulation (PWM), and universal
asynchronous receiver/transmitter (UART). It includes Python
and C software libraries for interfacing with these I/O peripher-
als. Consequently, building an application that interfaces with
physical sensors and actuators takes just a few lines of code.

However, precise timing is often a key requirement in real-
time applications; for example, the timing uncertainty suffered
by a non-real-time OS like Linux can cause control system
instability [2]. A program running on “bare metal” executes
somewhat deterministically, due to having essentially sole
control of the CPU. In contrast, a program running on top
of a multi-threaded OS competes with other programs and OS
services, and therefore executes with much less determinacy.
To address this, some SoCs include subsidiary co-processors
to be used in real-time applications; this architecture is a
feature of ARM’s “big.LITTLE” heterogeneous computing
architecture and also the OMAP family of Texas Instruments
SoCs.

Fig. 1: The Cyclops web-based PRU integrated development environment:
users write PRU code in JavaScript-like language (upper left), which Cyclops
compiles to pasm (lower left), with a status window on the right.

In particular, the Beaglebone Black’s Sitara SoC is in the
OMAP family; to support real-time applications, it contains
two 200-MHz microcontrollers called “Programmable Real-
time Units” (PRUs) that run independently from the main 1-
GHz CPU. They have their own dedicated data and instruction
memory, and have full access to the SoC’s peripherals. In
principle, a real-time unit paired with an OS running on
a processor should provide the best of both worlds: the
real-time unit handles time-sensitive aspects of an embedded
application, and the OS provides the filesystem, memory
management, task management, and networking.

A real-time application that leverages the PRU and the CPU
concurrently will naturally require that they share a common
sense of time. For example, a control algorithm on Linux runs
with respect to the main processor’s clock. However, it may
need time-stamped sensor measurements from the PRU. The
PRU runs independently from the main processor and uses its
own internal cycle counter register to track time. Therefore,
such a system requires some form of time-synchronization
between the PRU and the main processor. We present a tool

to address this need.
This paper presents a collection of software for developing

real-time applications on the Beaglebone Black. The software
is called “Cyclops,” for “cycle-level operations”. It provides a
web-browser-based integrated development environment (IDE)
for the PRU, shown in Figure 1. Cyclops streamlines the
development of PRU code by offering a JavaScript-inspired
language that it compiles into PRU assembly language. Cy-
clops provides a library of common functions for interfacing
the PRU with various peripherals like the ADC, GPIO, and
PWM. It expedites the configuration of the PRU and relevant
peripherals on the Beaglebone by automatically configuring
the Beaglebone’s device tree overlays and pinmux. Finally,
for time-synchronization, Cyclops provides a C library of
PRU functions and a Linux kernel module for disciplining
the PRU clock with reference to the main processor clock.
We conclude the paper with an evaluation of a PRU/CPU
time-synchronization scheme, wherein the PRU’s timestamped
sensor measurements are expressed in processor time within
sub-microsecond accuracy.

B. Related Work

The Beaglebone Black and its Programmable Real-time
Unit have been used for several applications. In [3], the
authors performed audio processing with sub-millisecond la-
tency using the PRU. The authors of [4] describe how to
use the PRU for real-time sensing and control applications.
In [5], the PRU’s deterministic execution enabled real-time
target-detection via a frequency-modulated ultrasonic sensor.
Similarly, the BBB was used in [6] to collect and process real-
time high-resolution hydro-acoustic data. In [7], the authors
use a BBB in the development of a three-phase micro-inverter.
Clearly, the Beaglebone SoC has found applications across
multiple domains. Our Cyclops tool aims to enable the BBB
for further research by facilitating the setup, development, and
integration of the PRU with the rest of the BBB.

Using application-specific co-processors beside a general-
purpose processor was explored in [8], wherein the authors
compared a combined RISC/DSP architecture to a single RISC
architecture for 3G multimedia mobile applications.

Existing literature also highlights the importance of syn-
chronizing various peripherals on a single board to a common
notion of time. Through a new OS abstraction — timelines —
the authors of [9] synchronized a radio peripheral with the host
processor’s clock. They also implemented a software stack
in the Linux kernel built around their timeline abstraction to
support multiple simultaneous synchronizations, motivated by
the need of a timing stack in [10]. This paper extends the work
in [9] by augmenting their time-synchronization framework to
the Beaglebone’s PRU.

This paper is organized as follows. Section II describes
the Beaglebone Black platform, focusing on the PRU, device
tree, and Linux clocks. In Section III we describe the Cyclops
system. Section IV demonstrates the result of synchronizing
the PRU and CPU clocks using Cyclops. We conclude in
Section V.

II. BACKGROUND

A. Programmable Real-time Unit (PRU)

The Beaglebone Black includes two 200-MHz microcon-
trollers called “Programmable Real-time Units” (PRUs) that
operate independently from the 1-GHz main processor that
runs Linux. Each PRU contains a 32-bit RISC processor core
with dedicated instruction and data RAM (8 kB of each).
Another 12 kB RAM is shared between the PRUs for fast
communication between them. The PRUs also have full access
to the Beaglebone’s main 500 MB RAM and all the SoC’s
peripherals. Moreover, the PRUs have single-cycle access to
several GPIO pins on the BBB’s header, making them suitable
for fast nanosecond-level I/O. The PRU is programmed in PRU
assembly language (“pasm”) or C; Texas Instruments provides
closed-source compilers to compile either language into PRU
machine language.

For time-keeping, the PRU has access to several counters.
The simplest counter is the 32-bit “PRU cycle counter,” which
merely counts the number of cycles since the PRU started
executing. This counter is not suitable to drive higher-level
clocks because it does not wrap automatically upon overflow;
when it reaches (232− 1), which takes about 20 seconds, it
simply stops counting and must be reset explicitly. Instead,
for our work, the PRU keeps time via a counter within
the Industrial Ethernet Peripheral (IEP). The IEP contains
a 32-bit timer with capture and compare events, and can
be configured to wrap automatically on overflow. The PRU
accesses the IEP timer very deterministically, allowing us
to account for that latency in our PRU timekeeping logic
described in Section III-E.

B. The Linux Device Tree

When a system boots up, the kernel needs to learn what
memory address ranges correspond to peripheral hardware
registers. An embedded system typically has a fixed hard-
ware configuration for a particular use-case, so its device
configuration is typically hard-coded into the Linux kernel.
This practice resulted in a situation where the mainline Linux
kernel was being polluted by board- and architecture-specific
configuration files.

The solution adopted by Linus Torvalds was to separate
the hardware configuration from the Linux kernel into a data
structure called a device tree. The device’s bootloader passes
the device tree file to the kernel at boot-time as a kernel
parameter. The kernel then reads it to learn the hardware
configuration it is running on and load the appropriate drivers.
This enables a single kernel to be run on multiple hardware
platforms.

A drawback of the device tree is that the Linux kernel reads
it only once at boot-time. Hardware platforms like the Beagle-
bone and the Raspberry Pi can be customized with auxiliary
daughter-boards that contain radios, accelerometers, and other
sensors and actuators. Users often want to reconfigure their
boards without having to reboot. To accommodate this, the
device tree concept was expanded in Linux kernel version

3.17 to accommodate dynamic reconfiguration during runtime.
The user loads a binary file called a device tree overlay that
contains the hardware configuration of an auxiliary daughter-
board. The kernel then integrates the overlay’s device drivers
into the existing device tree.

However, the implementation of device tree overlays is
relatively immature and changed significantly between ver-
sions 3.18 and 4.1 of the Linux kernel. Consequently, it is
a significant challenge for new Beaglebone users to write,
compile, and load the appropriate device tree overlays. In
Section III-C we describe how Cyclops circumvents the device
tree overlay system by implementing a Linux kernel module to
automatically configure the Beaglebone’s pinmux controller.

C. Clocks in Linux

Operating systems play a key role in how time is man-
aged and delivered to applications. In the Beaglebone,
Linux monitors a single timer peripheral — a simple
32-bit counter — and maintains clock abstractions with
names like CLOCK REALT IME, CLOCK MONOTONIC,
and CLOCK MONOTONIC RAW . Despite being derived
from the same timer, these virtual clocks have different prop-
erties; for example, CLOCK MONOTONIC counts up strictly
monotonically, even if the user tries to rewind the system
clock. CLOCK REALT IME is the Linux system clock that
can be disciplined through synchronization algorithms.

Clock synchronization algorithms like NTP [11] adjust a
clock by modifying how it converts the underlying timer
peripheral’s counter into a clock value. However, the accuracy
of NTP is limited by the timing accuracy of Linux’s software
timestamps. Instead, the Precision Time Protocol (PTP) can
achieve nanosecond-level synchronization using clocks based
on timers capable of hardware-based timestamps, see [12],
[13]. We employed this idea in [9], in which we made the
BBB’s processor clock PTP-compliant, then used this clock
in a PTP-based clock-synchronization algorithm for networks
of Beaglebones. In the present paper, we extend the scope of
this effort by synchronizing the BBB’s processor clock with
its PRU’s clock, which is derived from a timer capable of
hardware timestamps. This allows the PRU to share a sense
of time with PRUs in other BBBs across a network, useful for
distributed systems.

III. CYCLOPS ARCHITECTURE

In this section, we present the details of the Cyclops
system architecture. The block diagram in Figure 2 shows the
main pieces, which are described in detail in the following
subsections and summarized as follows: The user writes PRU
code in a web browser that runs a simple IDE from a web
server. The IDE is shown in Figure 1. Code can be written in
PRU assembly language (pasm), or a custom JavaScript-like
language we developed for Cyclops. The IDE converts this
code into pasm, compiles it into an executable binary, then
copies it to the PRU’s instruction memory using a program
called the “PRU Loader”. The PRU Loader then uses a
Linux kernel module (LKM) we wrote called “pin-pirate” to

processor
clock LKM

/dev/pinpirate

synchronization
daemon

web server

Browser
compiler + IDE

Libpruss

ioctl

PRU loader

Cloud

User

Kernel

HardwareProcessor

Timer

PRUSSMemory

gpio
IEP Timer

Firmware

clocksource
UIO

Pinmux Controller

pin-pirate LKM

Fig. 2: Cyclops system architecture. Components built-in to the Beaglebone
are outlined as regular black blocks, Cyclops components are bold blue, and
the components associated with our PRU/Processor time-synchronization are
dotted red. These components are described in detail in Section III.

configure the Beaglebone’s pins for use with the PRU and
peripherals like the ADC, GPIO, and PWM. The right-hand
side of Figure 2 is related to PRU/CPU clock synchronization
and is described in Section III-E. We now describe these main
pieces of Cyclops in more detail.

A. Web-browser-based PRU IDE

We implement the IDE as a web-browser-based application,
a screenshot of which appears in Figure 1. The user writes
Cyclops code in the upper-left window. The “compile” button
converts the Cyclops program into pasm, which is shown in
the lower-left window. This PRU code can be edited in-place
for minor corrections and tweaks which is a great feature in
Cyclops to the make the generated code readable. Clicking
“run” compiles the pasm to PRU machine code, sends it to
the PRU’s instruction memory, configures the pins as inputs
or outputs as specified by the user’s program, then starts the
PRU. Any data from standard output or error is piped back
into the IDE’s terminal pane.

B. Programming Language, Compiler, and Loader

The Cyclops IDE can be programmed in pasm, or a custom
language we developed: the Cyclops language. The syntax is
similar to JavaScript; it is intended to have a minimal learning
curve and serve as a way to quickly experiment with the PRU.
The goal of the Cyclops language is to combine the conve-
nience of C with the determinism of pasm. It achieves this by
supporting a small feature set: variable assignment, arithmetic
expressions, if/else conditional statements, and while-loops.
Notably it does not support for-loops, functions, or floating-
point arithmetic. Consequently, it forces the programmer to
write simple code more appropriate for a real-time application,
with more deterministic runtimes. Moreover, unlike the Texas
Instruments PRU C compiler, we contribute the Cyclops

language and compiler to the open-source software community
for inspection and improvement. The source code for the
Cyclops library is hosted here:

• https://github.com/nesl/Cyclops-PRU

For the Javascript-inspired Cyclops language, variables do
not need to be explicitly declared, but rather are implicitly
declared on first assignment. The number of variables in a
program is limited to the size of the register file. Keeping all
variables in registers avoids nondeterministic latencies due to
register spilling, and helps keeping the compiler design simple.
Cyclops reserves r0 as the zero register and r1 as a stack
pointer for passing arguments to the print function. In the case
of arithmetic expressions, intermediate results are assigned to
temporary registers that are scoped to the current statement.
The range of registers available for general and temporary use
can be customized by the user.

The Cyclops language provides built-in variables that are
linked to its single-cycle GPIO pins. The variables have the
same names as the Beaglebone’s P8 and P9 header pins, e.g.,
P8_45. The compiler infers whether or not a pin is for input
or output based on its first use: A statement assigning a 1
or 0 to the pin variable implies that the GPIO pin should be
configured an an output. Reading a pin variable, for example
in a conditional statement like if(P8_45){...}, results in
Cyclops auto-configuring the pin as an input with an internal
pull-down resistor. Cyclops throws a compilation error if a pin
is being used for both input and output in the same program.

The PRU Loader is a simple userspace application. It copies
the PRU binary into the PRU and configures the BBB’s
pins as specified by the user’s code. At load-time, it uses
the Libpruss UIO driver to copy the binary to the PRU’s
instruction memory, and it uses our “pin-pirate” Linux kernel
module to configure the SoC’s pinmux appropriately. This
LKM is described next.

C. Automatic Pinmux Configuration with Pin-Pirate

As described in Section II-B, it can be challenging to con-
figure a Beaglebone’s device tree overlay correctly. To address
this, Cyclops provides an alternative method of configuring the
hardware during runtime: a Linux kernel module named “pin-
pirate.” Pin-pirate is a simple LKM that configures pins by
writing directly in the pinmux controller’s hardware registers.
Normally, the Beaglebone’s memory-protection unit protects
the SoC’s control registers from userspace, so one cannot sim-
ply mmap the control registers from userspace; however, as an
LKM, pin-pirate executes in privileged mode and can thereby
bypass this protection. Pin-pirate is exposed to userspace as
a simple character device located at /dev/pinpirate. If
udev rules are configured properly on the system, then root
permissions are not required to access this device. To change
a pin configuration one can simply run echo reg val >
/dev/pinpirate, where reg and val are the register
offset and value of the pin for the pinmux controller, as
described in the TI AM335x Technical Reference Manual,
section 9.3.1.

D. PRU C library for I/O and Time Synchronization

The Cyclops IDE and Javascript-inspired Cyclops language
provide a quick way for programmers to get started with
PRU development. However, the conventional method for
programming the PRU involves writing C and using the Texas
Instruments PRU C compiler. For users who prefer this method
of development, Cyclops includes a C library with the same
convenient functions offered by the Cyclops language for
I/O and time synchronization. A summary of these functions
appears in Table I.

TABLE I: The PRU C library API functions.

Description Example
Configure the ADC. init_ADC()

Read the ADC. read_adc_data()
Read GPIO. read_pin(P8_45)
Write GPIO. assert_pin(P9_27)
Toggle GPIO. toggle_pin(P8_46)

PRU blocks for x µsec. WAIT_US(x)
PRU reads the 32-bit IEP timer

and converts that to nanoseconds. read_pru_time()
Adjust PRU clock by x nanoseconds. adj_pru_time(x)

E. Synchronization of PRU with Processor clock

Even though IEP timer and the main processor’s timer
are on the same SoC, they are driven by separate crystal
oscillators. The hardware timer driving the processor time is
driven by a 24 MHz oscillator, whereas the oscillator driving
the IEP timer for the PRU clock is a separate 25 MHz
oscillator. Therefore over time their clocks will drift, requiring
re-synchronization. Cyclops includes the means to synchronize
them, described next.

The red boxes in Figure 2 represent Cyclops components
that synchronize the PRU time to processor time. This enables
the PRU to time-stamp sensor measurements with processor
time, instead of a PRU-specific time. The synchronization
scheme works as follows: The synchronization daemon in Fig-
ure 2 initiates time synchronization by making the PRU assert
pin P8 46. The PRU has single-cycle access to this GPIO pin,
so this signal has very precise time resolution. At pin assertion,
the PRU calls the Cyclops function read_pru_time(),
which records its own timestamp in cycles using the 32-bit
IEP timer and converts it to nanoseconds (T1). Pin P8 46 is
physically wired to pin P8 9, which is monitored by an input-
capture channel of the processor timer. This channel records
the cycles of the processor timer when pin P8 9 asserts. The
“processor clock LKM” shown in Figure 2 is a loadable kernel
module that presents the processor clock as a Linux PTP-
based clocksource abstraction. This clocksource converts
the processor timer’s raw 32-bit cycles — captured upon pin
assertion — to nanoseconds (T2). The userspace synchro-
nization daemon uses ioctl calls to read the PTP-based
clocksource’s value in nanoseconds (T2), and communicates
it to the PRU using the UIO LKM. The PRU defines the
value offset to be (T1 − T2) and adjusts its own clock
using the Cyclops C function adj_pru_time(offset).

TABLE II: Three methods of generating a PWM signal on pin P8 45 with a 1-second period and 50% duty cycle: Raw pasm assembly language (left),
the Cyclops C library (middle) with functions for I/O, and the Cyclops language (right) with built-in variables for I/O operations.

pasm C with Cyclops C lib Cyclops language

START :
MOV r0 , 0xBEBC200 / / c o u n t f o r

0 . 5 s e c o n d s (2 * 10ˆ8 c y c l e s)
MAINLOOP:

SET r30 . t 1 / / s e t t h e o u t p u t p i n
P8 45 h igh

MOV r1 , r0 / / w a i t f o r 0 . 5
s e c o n d s

HOLD HIGH:
SUB r1 , r1 , 1
QBNE HOLD HIGH, r1 , 0
CLR r30 . t 1 / / s e t t h e o u t p u t

p i n P8 45 low
MOV r1 , r0 / / w a i t f o r 0 . 5

s e c o n d s
HOLD LOW:

SUB r1 , r1 , 1
QBNE HOLD LOW, r1 , 0
QBA MAINLOOP

p i n = P8 45 ;
/ / 1 second p e r i o d
p e r i o d u s = 1000000;
/ / 0 . 5 second du ty c y c l e
p u l s e w i d t h u s = 500000;
w h i l e (t r u e){

/ / Ou tpu t h igh
a s s e r t p i n (p i n) ;
/ / Wait f o r 0 . 5 s e c o n d s
WAIT US(p u l s e w i d t h u s) ;

/ / Ou tpu t low
d e a s s e r t p i n (p i n) ;
/ / Wait f o r 0 . 5 s e c o n d s
WAIT US(p e r i o d u s−p u l s e w i d t h u s) ;

}

/ / Each t i c k i s 5 nanoseconds .
w h i l e (t r u e){
/ / r e s e t t h e c y c l e c o u n t e r
t i c k = 0 ;
/ / Ou tpu t h igh
P8 45 = 1 ;
/ / Wait f o r 0 . 5 s e c o n d s
/ / (2 * 1 0 ˆ 8 c y c l e s)
w h i l e (t i c k < 0xBEBC200) {}

t i c k = 0 ;
/ / Ou tpu t low
P8 45 = 0 ;
/ / Wait f o r 0 . 5 s e c o n d s
w h i l e (t i c k < 0xBEBC200) {}

}

Since the PRU runs very predictably, the runtimes of these
function calls are deterministic and we account for them in
the time-synchronization algorithm; their runtimes are tallied
in Table III. Once the PRU is synchronized, all timestamps
from the PRU are expressed in processor time.

It should be noted that this synchronization scheme only
corrects the offset between the IEP timer and the main pro-
cessor timer and does not attempt to estimate the skew between
them. Higher-order synchronization methods to estimate clock
skew and its temperature dependence are outside the scope of
this paper.

TABLE III: Precise runtime of functions related to time-
synchronization in the Cyclops C library.

Function # cycles # nanosec
read_pru_time() 124 620
adj_pru_time(x) 58 290
read_raw_iep() 23 115

IV. EVALUATION

In this section we evaluate the Cyclops software in two
ways. First we compare code for generating a PWM signal in
pasm, Cyclops C library, and the Cyclops language, and show
that both the Cyclops C library and the Cyclops language
provide benefits over pasm. We then demonstrate how to
use Cyclops to synchronize the PRU clock to the processor
clock, so that PRU-measured sensors can be time-stamped
with processor time, facilitating real-time applications that use
both Linux and the PRU.

A. Comparison of Cyclops code
Table II demonstrates three implementations of a software-

based PWM signal on pin P8 45 of the Beaglebone Black
using the PRU. The implementation on the left uses pasm. The
middle column implements PWM in C; the red-colored func-
tions are provided by the Cyclops C library and facilitate I/O

and waiting for precise times. The rightmost column in Table II
is written in the Cyclops language using the Cyclops IDE.
Our IDE converts this code directly into pasm. Note that the
variables tick and P8_45 are pre-defined by Cyclops, and
resolve to the PRU’s cycle counter and its single-cycle GPIO
pin respectively. These built-in variables and the packaged API
simplifies PRU configuration and reduce programming effort,
leading to more readable and deterministic code.

Note that the code in Table II is merely an example; one
would normally use the built-in peripherals for PWM instead
of dedicating a PRU to it.

B. Using Cyclops for Time-Synchronization

To show the performance of synchronizing the PRU’s clock
with the processor clock, we first configured the system for
time-synchronization as described in Section III-E. Then we
captured simultaneous clock values at 250-ms intervals from
the PRU and processor clocks in the following way. We trig-
gered clock-sampling instants via an external 250-ms-period
square wave fed to GPIOs at pins P8 45 and P8 10. The
PRU monitored pin P8 45; upon a transition, it read the IEP
timer, converted it to nanoseconds according to the disciplining
parameters provided by the clock synchronization, and sent the
result to a listening userspace thread. On the processor side, an
input-capture channel monitored pin P8 10; upon a transition,
it recorded the value of processor timer, which our processor
clock LKM then converted to nanoseconds. This procedure
results in a list of pairs of 64-bit integers of nanosecond clock
values: one from the PRU clock, and one from the processor
clock. The difference between these two numbers is the clock-
synchronization error.

We plot histograms of this time-synchronization error in
Figure 3. To explore the sensitivity of synchronization error
to the synchronization interval, we ran three experiments,
each for 30 minutes, and each with a different rate of re-
synchronization (resync). In Figure 3a, the synchronization
daemon re-synchronizes the PRU clock every 8 seconds,

Fig. 3: Synchronization Accuracy between PRU and Processor Clock.

−500 0 500
 0

 50

100

150

200

D
is

tr
ib

u
ti
o
n

Accuracy (nsec)

(a) Synchronization Period = 8 seconds

−500 0 500
 0

 50

100

150

200

D
is

tr
ib

u
ti
o
n

Accuracy (nsec)

(b) Synchronization Period = 32 seconds

−500 0 500
 0

 50

100

150

200

D
is

tr
ib

u
ti
o
n

Accuracy (nsec)

(c) Synchronized only once at beginning of test

resulting in a maximum synchronization error of 432 ns
with an RMS accuracy of 233 ns. Similar results appear in
Figure 3b, in which the resync period was increased to 32
seconds. The uniform distributions are due to small fixed
resync periods and fixed sampling resolution. Figure 3c shows
the result of synchronizing the clocks only once, then letting
the two clocks drift apart for 30 minutes. In this case, the error
is bounded by 720ns, with RMS error of 297ns. Note that
this error distribution shows the effect of clock skew which
was not visible in Figure 3a and 3b due to smaller resync
periods. We conclude from these results that we can achieve
sub-microsecond synchronization accuracy between the PRU
and processor time with only a modest resync period.

V. CONCLUSION

Single-board computers with real-time co-processors offer
a platform for real-time applications that can combine the
advantages of operating systems and bare-metal platforms.
This paper presented a suite of software — Cyclops — to
facilitate the development of real-time applications on the
Programmable Real-time Unit within the Beaglebone Black
platform. Cyclops provides automated configuration of the
PRU, support for a high-level programming language, and
a library to interface the PRU with several I/O peripherals
on the Beaglebone. We demonstrated how one can use these
tools to synchronize the PRU clock with the processor clock,
achieving sub-microsecond synchronization accuracy with a
low re-synchronization frequency. This lays the foundation for
embedded applications which enjoy the features of a full OS
like Linux and use the “bare metal” PRU for time-critical op-
erations. Future work may explore time-synchronizing PRUs
across multiple nodes, enabling microsecond-accurate coordi-
nation in a distributed control system.

ACKNOWLEDGMENT

This research is funded in part by the National Science
Foundation under awards # CNS-1329755 and CNS-1329650,
and by the King Abdullah University of Science and Technol-
ogy (KAUST) through its Sensor Innovation research program.
The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of the funding agencies.

REFERENCES

[1] D. Molloy, Exploring BeagleBone: Tools and Techniques for Building
with Embedded Linux. John Wiley & Sons, 2014.

[2] B. L. J. E. Karl-Erik, A. A. Cervin, and D. Henriksson, “How does
control timing affect performance? analysis and simulation of timing
using jitterbug and truetime,” Control Systems Magazine, vol. 23, pp.
16–30, 2003.

[3] A. McPherson and V. Zappi, “An environment for submillisecond-
latency audio and sensor processing on beaglebone black,” in Audio
Engineering Society Convention 138. Audio Engineering Society, 2015.

[4] A. M. Anand, B. Raveendran, S. Cherukat, and S. Shahab, “Using
pruss for real-time applications on beaglebone black,” in Proceedings
of the Third International Symposium on Women in Computing and
Informatics. ACM, 2015, pp. 377–382.

[5] K. Kepa and N. Abaid, “Development of a frequency-modulated ultra-
sonic sensor inspired by bat echolocation,” in SPIE Smart Structures
and Materials+ Nondestructive Evaluation and Health Monitoring.
International Society for Optics and Photonics, 2015, pp. 942 913–
942 913.

[6] B. Travaglione, “Using a single-board microcontroller and adc to per-
form real-time sonar signal processing.”

[7] M. Götz, M. W. Gobetti, and F. B. Libano, “A grid-tie micro-inverter
software development based on a low cost multiprocessor platform,” in
Computing Systems Engineering (SBESC), 2015 Brazilian Symposium
on. IEEE, 2015, pp. 122–127.

[8] J. Chaoui, K. Cyr, S. de Gregorio, J. P. Giacalone, J. Webb, and
Y. Masse, “Open multimedia application platform: enabling multimedia
applications in third generation wireless terminals through a combined
risc/dsp architecture,” in 2001 IEEE International Conference on Acous-
tics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221),
vol. 2, 2001, pp. 1009–1012 vol.2.

[9] F. Anwar, S. Dsouza, A. Symington, A. Dongare, R. Rajkumar, A. Rowe,
and M. Srivastava, “Timeline: An operating system abstraction for time-
aware applications,” in Real-Time Systems Symposium (RTSS), 2016
IEEE. IEEE, 2016, pp. 191–202.

[10] A. Alanwar, F. Anwar, J. P. Hespanha, and M. Srivastava, “Realizing
uncertainty-aware timing stack in embedded operating system,” in Proc.
of the Embedded Operating Systems Workshop, Oct. 2016.

[11] D. L. Mills, “Internet time synchronization: the network time protocol,”
Communications, IEEE Transactions on, vol. 39, no. 10, 1991.

[12] K. Lee, J. C. Eidson, H. Weibel, and D. Mohl, “Ieee 1588-standard for
a precision clock synchronization protocol for networked measurement
and control systems,” in Conference on IEEE, vol. 1588, 2005, p. 2.

[13] R. Cochran and C. Marinescu, “Design and implementation of a ptp
clock infrastructure for the linux kernel,” in Precision Clock Synchro-
nization for Measurement Control and Communication (ISPCS), 2010
International IEEE Symposium on. IEEE, 2010, pp. 116–121.

