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Abstract— We propose an architecture for implementing
discrete-time control algorithms on a non-real-time operating
system so that sensing and actuation occur at precise times,
even if the OS preempts the control task. The architecture has
the controller perform its computation on one processor and its
sensing/actuation on a separate microcontroller. The controller
sends arrays of future time-stamped actuator commands to
the microcontroller, thereby allowing actuation to continue if
preemption occurs. We use this architecture to drive a DC
motor with a Beaglebone Black single-board computer, with
the controller running on Linux and the I/O performed on a
subsidiary microcontroller within the Beaglebone. This scheme
achieves a timing accuracy of 40 µs. We demonstrate that
this configuration improves a PID controller’s performance in
the presence of OS preemption, even when the preemption
persists across several sampling periods. In effect, this provides
a mechanism to make a controller resistant to OS preemption.

I. INTRODUCTION

A. Motivation

Modern computing systems offer many performance-
enhancing features like multi-tasking operating systems, mul-
tiple layers of caching, and multiprocessor support. However,
these features often result in nondeterminstic runtime be-
havior, making it a challenge to implement control systems
on such platforms (see Figure 1). Consequently, controllers
are often implemented on specialized platforms like “bare
metal” microcontrollers, real-time OSs, or FPGAs, which
offer finer control of execution and timing. It would be
advantageous for a controller architecture to offer both the
flexibility of a general-purpose computing platform and
also the determinism of a specialized solution. This paper
proposes a controller architecture that addresses this need.

B. Results

The specific contribution of this paper is a controller ar-
chitecture that enables a controller to run on a non-real-time
OS like Linux, yet maintain precise timing of the sensing
and actuation despite OS preemption. This is achieved by
performing the sensing and actuation on a dedicated “bare
metal” microcontroller that in essence serves as a real-time
I/O coprocessor; we refer to this as the “Real-Time Unit”
(RTU). Since the OS may preempt the controller at any
time, we cannot rely on it for precise sampling or actuation.
On the other hand, the RTU does not run an OS, so it
can sample and actuate at precise times without danger of
OS preemption. The key idea is to have the RTU buffer
time-stamped sensor measurements from the plant and apply
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Fig. 1. Timing in an idealized discrete-time system (top) versus a physical
control system running on a non-real-time operating system (bottom). Due
to OS preemption and other sources of nondeterminacy, the sensor and
actuator signals yk and uk neither occur at their intended sample times nor
align with each other.

buffered time-stamped actuation commands to the plant at
precise times. Asynchronously, the controller requests an
array of past measurements from the RTU, computes an array
of future time-stamped actuation commands, and sends it to
the RTU to be executed at the correct times. Consequently,
the controller can be preempted but the RTU will continue
to apply actuation on its behalf.

We implemented this controller architecture on a Beagle-
bone Black (BBB) to drive a DC motor. For demonstration
purposes, a simple PID controller runs on Linux on the
BBB’s main 1-GHz CPU, and we use a subsidiary processor
core on the BBB as the RTU. The RTU reads a rotary
encoder and actuates the motor with PWM every 5 ms
with 40 µs accuracy. The PID controller uses a simple
method of predicting future measurements to compute an
array of future PWM values, which it sends to the RTU. We
compare this setup to a PID controller with identical gains
that uses the BBB’s standard file-based interface for I/O. We
observe that although both setups perform well when the
CPU is idle, when run alongside several other high-priority
tasks the RTU-based setup far out-performs the standard I/O
mechanism.

C. Backgroud and related work

A program may execute nondeterministically for several
reasons. On a multithreaded processor, the task scheduler
may interrupt a task to let another task use the CPU, or to
service an interrupt [10]. The time required to fetch data from
memory varies wildly depending on whether the data was
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cached [13, 14]. In a Non-Uniform Memory Access (NUMA)
multiprocessor architecture, CPUs are grouped into nodes,
each with its own dedicated local memory. The speed of a
memory reference therefore depends on whether the desired
data resides in the executing processor’s local memory or
in another node’s memory [6, 15]. System Management
Interrupts commandeer the CPU and RAM to perform system
maintenance, e.g., turning on the fan or verifying memory
consistency [12].

Several platforms aim to provide determinism in program
execution. FPGA designs are synthesized to obey strict user-
supplied timing constraints and are therefore well-suited for
control applications, see [9]. Matlab’s “Simulink Coder”
converts Simulink diagrams into code for embedded tar-
gets without OSs; [5] studies its use in rapid prototyping
of real-time control algorithms. Real-time OSs like Vx-
Works, Integrity RTOS, µCOS, and FreeRTOS all provide
OS-related functionality like multi-tasking, networking, file
system support, and memory management while providing
timing guarantees. The current RTOSs are surveyed in [2].
RTOS applications to control are explored in [1]. The authors
of [3] analyze RTOS task scheduler algorithms. While pow-
erful, these platforms lack the flexibility of a true general-
purpose OS in terms of availability of libraries and device
drivers.

Work has also been done to modify Linux itself to provide
real-time performance guarantees. The OS provided by the
“Real-Time Linux” project allows interrupt service routines
(ISRs) to be run as regular tasks. Similarly, the Xenomai
software augments Linux with a second kernel that runs
above the main Linux kernel. The Xenomai kernel can
disable the Linux scheduler in order to guarantee timely
task execution. RT Linux and Xenomai have found appli-
cations in low-latency audio processing [7] and electrical
substation automation [11]. The both allow the user to
prioritize userspace tasks above interrupts. However, this
practice can result in reduced performance if misconfigured,
e.g., dropping network packets due to the network ISR being
neglected in favor of the control task. These solutions do not
overcome the fundamental problem that when several real-
time tasks share the same CPU, preemption is inevitable and
is either managed by the OS or by the programmer.

This paper implements the proposed control architec-
ture on a Beaglebone single-board computer, running the
controller on the primary CPU and utilizing a subsidiary
processor core as a real-time I/O coprocessor. The practice
of placing application-specific coprocessors beside a general-
purpose procesor is a feature of the “ARM big.LITTLE”
heterogeneous computing architecture and the family of
processors in Texas Instruments’ “Open Multimedia Appli-
cations Platform” initiative, discussed in [4].

This paper is laid out as follows. In Section II we describe
a general architecture for running a control task on a non-
real-time OS with a real-time I/O coprocessor. In Section III
we apply this technique to a PID controller on a Beaglebone
single-board computer and observe its resiliency against OS
preemptions.

II. REAL-TIME I/O COPROCESSOR CONCEPT

In this section we describe the architecture of our con-
trol and sensing/actuation scheme. Figure 2 illustrates the
basic idea: The controller runs on a non-real-time OS like
Linux, whereas the sensing and actuation are performed by
a dedicated “bare-metal” microcontroller called the Real-
Time Unit (RTU). The RTU contains two circular buffers,
one of size ns for time-stamped sensor measurements, and
one of size na for time-stamped actuator commands. At
each timestep, the RTU reads, time-stamps, and saves a new
sensor measurement in the sensor buffer, and then applies the
appropriate actuator command from the actuator buffer. The
controller and RTU may be co-located on the same circuit-
board or even within a single system-on-a-chip.
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Fig. 2. Schematic of the control architecture. The real-time I/O coprocessor
measures sensors yk and applies actuator values uk every Ts time units
from its two buffers. Asynchronously, the controller retrieves the ns most
recent sensor values and transmits na time-stamped actuator values for the
RTU to apply to the plant.

We now explain Algorithms 1 and 2 below, which sum-
marize the code that runs on the controller and the RTU.

Algorithm 1: Controller
1: while true do
2: Retrieve the RTU’s sample buffer.
3: Generate a list of na time-stamped actuator values.
4: Send the list to the RTU.
5: Wait for next timestep.
6: end while
Algorithm 2: RTU

7: while true do
8: if controller requested data, then
9: Send the sensor buffer to the controller.

10: end if
11: if controller sent a new actuation schedule, then
12: Copy the schedule to the actuation buffer.
13: end if
14: Check the time.
15: if sample time Tsk, k P N just elapsed, then
16: Sample sensors and store with time-stamp k.
17: if pk, ukq is in the actuation buffer, then
18: Apply input uk to the plant.
19: else
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20: Apply default input to the plant.
21: end if
22: end if
23: end while

(Algorithm 1: Controller.) At an arbitrary time t,
the controller requests the RTU’s measurement buffer
and receives ns time-stamped measurements pk ´ ns `
1, yk´ns`1q, . . . , pk, ykq, where k – tt{Tsu is the index of
the last timestep before time t. The controller then computes
a list of na time-stamped actuator values. The resulting ac-
tuation sequence could follow the retrieved sample sequence
by starting at sample k ` 1, e.g., pk ` 1, uk`1q, . . . , pk `
na, uk`na

q. However, if it is known that the controller will
take at least C sample times to run, the controller may instead
compute and send actuation signals to be applied at sample
times k`C`1, . . . , k`C`na. In either case, the controller
then transmits the actuation sequence to the RTU’s actuator
buffer. Note that because the controller may be preempted,
the controller’s actions occur asynchronously with respect
to the RTU’s sampling and actuation times. Section II-A
discusses the issues of generating future actuation sequences.

(Algorithm 2: RTU.) The RTU loop starts by checking
whether the controller requested data or delivered a new
actuation schedule. If so, the RTU transfers sensor data to
the controller or copies new actuation commands into the
RTU’s private buffer. At sample time t “ Tsk, k “ 1, 2, . . .,
the RTU reads the sensor measurement yk and stores the
time-stamped measurement pk, ykq in its circular buffer. It
then searches its actuation buffer for an actuation command
of the form pk, ukq and applies uk to the plant over the time
interval rTsk, Tspk ` 1qq. If the actuation buffer does not
contain a command for timestep k, the RTU applies some
default actuation, e.g., uk´1 or 0.

The RTU’s ability to sample at precise times depends cru-
cially on its ability to check the time rapidly. Consequently,
it is important that the RTU be able to execute Algorithm 2
lines 8–13 quickly. Therefore the interconnection between
the controller and the RTU needs to be fast, e.g., a shared
memory. Similarly, the actual sampling and actuation also
needs to happen quickly (lines 15–21).

Figure 3 illustrates this architecture with buffer sizes
ns “ 3 and na “ 5. At each sample time t “ Tsk,
k P N, the RTU reads and stores a sensor measurement.
At some time between Ts and 2Ts, the controller delivers
an actuation schedule pk, ukq, k “ 2, . . . , 6, then gets
preempted. Despite the controller being preempted, the RTU
executes the actuation schedule. Some time between 3Ts and
4Ts the controller requests the sensor buffer, which contains
pk, ykq, k “ 1, 2, 3. The controller then begins computing
the actuation sequence pk, ukq, k “ 4, . . . , 8, but gets
preempted partway through. Later, between 5Ts and 6Ts,
the controller awakens and delivers the actuation sequence.
Note that because of preemption, the new actuation schedule
arrives too late to apply the new (underlined) actuator values
intended for sample times 4Ts and 5Ts; instead, the RTU
applied actuator commands u4 and u5 from the previous
actuation schedule. After time 7Ts the controller receives

the sample buffer with measurements for k “ 5, 6, 7. Note
that sample y4 was overwritten and so is not available to the
controller.

The key idea in this architecture is that the closed-loop
system can tolerate some amount of OS preemption because
the RTU continues to gather measurements and apply actu-
ation even while the controller is asleep. The aim is for the
controller to provide a sufficient number of future actuator
values so the RTU can continue to stabilize the plant if the
controller gets preempted. Even though the future actuations
are applied “open-loop”, we shall see that they are better than
holding the actuators constant until the controller awakens.

A. Building the actuation schedule

The architecture proposed here requires the controller
to produce, at each sample time k, an actuation schedule
with control values for the next na future sample times
k ` 1, k ` 2, . . . , k ` na. Two options are available: a
model-free approach that generates the future control signals
without an explicit model for the process and a model-based
approach that uses such a model.

To describe both approaches consider a discrete-time
nonlinear controller expressed by the following state-space
model

zk`1 “ fpzk, yk, rkq, uk “ gpzk, rkq, (1)

where the yk denote sensor measurements, the uk actuation
values, and the rk reference signals.

The model-free approach generates the na future actuator
commands uk`1, uk`2, . . . , uk`na using polynomial extrap-
olation. Assuming that the measurement sequence can be
approximated by a polynomial of degree q, one can use
the previous q ` 1 measurements yk´q, . . . , yk´1, yk to pre-
dict na ´ 1 future measurements yk`1, yk`2, . . . , yk`na´1.
Feeding these to the controller (1), one obtains the desired
future actuator commands uk`1, uk`2, . . . , uk`na . As we
shall see in Section III, even a low order polynomial (linear
extrapolation with q “ 1) can be used to obtain good results.

When a plant model is available, the accuracy of the
predicted measurements can be improved. Assuming a linear
plant model of the form

xk`1 “ Axk `Buk, yk “ Cxk `Duk, (2)

if the plant’s state xk can be directly measured or estimated,
one can estimate future measurements by directly solving the
process model (2), which leads to

ŷk`i “ CAix̂k `
´

i´1
ÿ

j“0

CAi´j´1Buk`j

¯

`Duk`i,

@i P t1, 2, . . . , na ´ 1u, (3)

where x̂k denotes the state estimate at time k and
uk`1, uk`2, . . . , uk`i a sequence of future control signals
constructed based on the controller model (1) and previous
measurement estimates obtained by (3). The use of the
plant model (2) permits a more accurate estimate of future
measurements and consequently a better schedule for the
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Fig. 3. The RTU buffers sensor measurements (circles) and executes buffers of time-stamped actuator commands (squares) from the controller.

future controls. However, our initial experiments indicate
that this approach does not yield significant gains unless the
sample time is fairly large.

Linearity of the process model in (2) was assumed solely
for simplicity of presentation, as the sequence of estimated
outputs can easily be generated for a nonlinear process
model, provided that the process’ state can be measured
or estimated. Model predictive control (for either linear
or nonlinear plants) is especially attractive for this type
of architecture, as it automatically produces a sequence of
future controls.

III. EXPERIMENTAL RESULTS

In this section we compare the performance of a PID
controller driving a DC motor when it uses a standard file-
based I/O interface versus using a real-time I/O coprocessor.

A. Hardware

Fig. 4. Picture of the hardware setup. A Beaglebone Black drives a DC
motor and measures its shaft angle using a rotary encoder.

Figure 4 shows our hardware setup. A TB6612FNG motor
driver drives a hobby-grade permanent-magnet DC motor
from a 5-volt power supply. The motor driver takes a 50 kHz

PWM signal and three discrete 3.3 V signals which deter-
mine the motor direction. The motor shaft angle is measured
by a US Digital rotary optical encoder. The encoder has 4096
counts per rotation and outputs a quadrature-encoded pulse
(QEP) signal. A 5V-to-3.3V level-shifting circuit scales the
QEP signal.

The controller runs on a Beaglebone Black (BBB) single-
board computer [8]. The BBB has a 1-GHz processor,
512 MB RAM, HDMI video, an ethernet port, and a USB
port. It ships with Debian Linux installed on its 4 GB
flash memory. It is powered by a Texas Instruments Sitara
AM3358BZCZ100 processor, which contains ADC, PWM,
QEP, and GPIO peripherals.

For a real-time I/O coprocessor, we use one of the two
“Programmable Real-Time Units” (PRUs) included in the
Sitara microcontroller. Designed for real-time applications,
each PRU is a 32-bit 200-MHz RISC processor core that
executes independently from the main CPU, has its own
8 kB data RAM, and has full access to the peripherals on
the Sitara. The CPU and PRU have access to each other’s
memory and can therefore exchange time-stamped sensor
and actuator data quickly. The PRU is not pipelined, making
its execution simpler and more deterministic: register-level
instructions run in 1 cycle (5 ns), and memory instructions
to the PRU’s local memory take 3 cycles. The PRU’s data
RAM does not share a bus with the main RAM, so the PRU
can read and write to it without the risk of bus contention
with the main memory. A cycle counter register within the
PRU allows it to track time in increments of 5 ns. For these
reasons, the PRU is well-suited for use as a RTU.

We implemented the control architecture described in Sec-
tion II on the PRU with circular buffer sizes of na “ ns “
32. The sensor buffer stored time-stamped QEP samples from
the rotary encoder, whereas the actuator buffer stored time-
stamped PWM and GPIO commands for the motor driver. To
coordinate data transfer between the CPU and the PRU, we
double-buffered the sensor and actuator arrays in the PRU
data RAM and implemented rudimentary mutual-exclusion
semaphores. Accounting for the time to sample, actuate,
and communicate, our implementation on the PRU achieved
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sampling and actuation timing accuracy of 40 µs.

B. Controller Design

A DC motor can be modeled as a series connection of a
resistor, inductor, and back-EMF voltage source, resulting in
the dynamic equations

Vm “ iR` L9i`K1ω

J 9ω “ ´bω `K2i` τext

9θ “ ω,

(4)

where i is the current through the motor, R and L are the
resistance and inductance of the motor windings, θ is the
motor shaft angle, ω is the angular velocity, Vm is the voltage
applied across the motor, K1 and K2 are motor constants, b
is the friction coefficient, J is the angular moment of inertia
of the motor, and τext is any external torque imposed on the
motor shaft.

Equations (4) form a 3rd-order linear dynamical system.
System identification was performed on the motor system
using ARX on voltage and angle data to obtain the following
3rd-order discrete-time linear model of the DC motor:

Θpzq

V pzq
“

´0.5898z´1 ´ 1.121z´2 ´ 0.2757z´3

1´ 1.586z´1 ` 0.3719z´2 ` 0.2136z´3
. (5)

The model’s sample time was Ts – 0.005 s. The model was
validated with additional input/output data.

A PID controller was designed using Matlab’s PIDTuner
with the discrete-time transfer function

Cpzq “ kp ` ki
Ts
z ´ 1

` kd
1

Tf ` Ts{pz ´ 1q
, (6)

where kp “ ´0.0304, ki “ ´0.106, kd “ ´8.73e´4,
and Tf “ 0.00405. The parameter Tf is the time-constant
of a first-order filter on the derivative term. This controller
was implemented as an IIR filter in C. To produce a future
actuation schedule, the two most recent angle measurements
were used to linearly extrapolate measurements for the future
motor angles, and the PID controller was run on the tracking
error between those predicted measurements and a known
reference signal. Specifically, given the sensor buffer ending
with sample k, the controller computed

∆ – θk ´ θk´1

θk`i – θk `∆i

vk`i – cpθk`i, θk`i´1, θk`i´2, vk`i´1, vk`i´2q,

for i “ 1, . . . , na, where cp¨q is the IIR representation of the
controller (6), and θk and vk are the angle measurement and
voltage command at the kth sample time.

C. Results

Figure 5 shows the result of the two PID controllers as
they track a triangle-wave reference signal on motor shaft
angle. The top two plots show the performance of the PID
controller when it uses the standard I/O mechanism on the
BBB, wherein the peripherals appear as normal files. The
lower two plots show the response of the PID controller when
it uses the PRU as a real-time I/O coprocessor. The second

and fourth plots show the time between each iteration of the
PID control loop running on the main processor.
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Fig. 5. Both the standard PID controller and the PRU-based PID controller
have similar performance under idle (t ă 2). However, when subjected to
OS preemption (t ą 2), the PRU out-performs the standard one.

TABLE I
RMS REFERENCE-TRACKING ERROR OF THE CONTROLLERS UNDER

IDLE AND HEAVY SYSTEM LOAD.

PID using standard I/O PID using RTU I/O
Idle 12.0 11.3

Heavy 144 36.3

For the first two seconds, the PID controllers each run with
essentially sole control of the CPU. There are no major OS
preemptions during t ă 2 and the second and fourth plots
show that each iteration takes the intended sample time Ts “
0.005 s. We observe that the two control configurations have
similar performance during t ă 2. At t “ 2, several higher-
priority CPU-heavy tasks were spawned. The spikes in the
second and fourth plots during t ą 2 correspond to controller
preemptions, sometimes lasting 10 times the sample period.
Whereas the PID controller using the standard I/O interface is
heavily disrupted by these preemptions, we observe that the
RTU-based controller runs much more smoothly due to the
PRU buffering future control signals. The root-mean-square
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tracking errors for each controller under idle and heavily-
loaded processor conditions are shown in Table I. Similar
results were obtained as the priorities of the competing tasks
were changed to vary the frequency and durations of the OS
preemptions.

IV. CONCLUSION

In this paper we presented a controls architecture that
pairs a real-time I/O coprocessor with a controller on a
non-real-time operating system. The RTU enables sampling
and actuation at precise times, even when the controller
is preempted by the OS. This enables control designers
to reap the benefits of an OS with minimal concern for
the timing uncertainties associated with the OS task sched-
uler. We demonstrated the platform’s utility by designing a
preemption-resistant PID controller on a Beaglebone Black
that uses its Programmable Real-time Unit as a real-time I/O
coprocessor. The RTU-based PID controller out-performed
the standard PID controller in the presence of large OS
preemptions. Future directions of this work include using
a more sophisticated method of forward-prediction for the
actuation sequence, such as model predictive control. Also
we intend to extend this architecture to multiple controllers
distributed across a network.
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