“Art of Science” competition

Justin Pearson
2015-02-19

Competition organized through the Center for Science and Engineering Partnerships at the University of
California at Santa Barbara.

Summary

We stream movies, send pictures to friends, and video-chat with distant loved ones, all digitally, and all
without a second thought. Empowering this revolution behind the scenes is Information Theory, which
provides a mathematical framework to quantify, compress, and transmit information.

This picture illustrates an important theorem in Information Theory: the Asymptotic Equipartition Prop-
erty. It formalizes and generalizes the intuitive notion that if you flip a fair coin many times, you would
expect about 50% heads. In the image, each square represents a string of coinflips (with 0=tails and
1=heads), with smaller squares representing longer strings of flips. Like a family tree, each square
recursively generates 4 squares below it by appending one of 4 suffixes: 00, 01, 10, or 11. Each square
is black, but is made transparent depending on how close to “50% heads” its corresponding string of
coinflips is. We see that the vast majority of the tiny squares at the bottom are nearly 50% heads and
hence transparent, allowing the underlying Swiss pasture scene to show through.

2 | csep-art-of-science-contest-2015-v2-for-web.nb

Final picture

ni= Clear ["Global #"];
SetDirectory[NotebookDirectory[]];
Thumbnail["art-csep-pearson.jpg", 800]

00000 00001

00010 00011

out[3]=

How it’s made

Basic idea

Each square represents a bitstring. Every ‘child’ square inherits the parent’s bitstring with +00, +01,
+10, or +11 added.

csep-art-of-science-contest-2015-v2-for-web.nb | 3

4= Show[Import["idea.jpg"], ImageSize » 700]

Lt

—

B0 o+o! OO0 +1D

OO0V 0 +00 ootto+ i\

Votrst /] oo §o

ooled |ooil|

Out[4]=

(X*')j* s’l,ﬁ))

/ (e 1+ 52, 1+
ggﬂg ﬂ b+ol[/b+lo
57 o ol

s broo| b+)y

Jl ¢ ("'j) (41

g)uu-s_if)/ h)
b
oo) 3
$09 depenls on
e

Define object: ‘square’

We represent a bitstring as a ‘square’ object square[bitstring, position, color].
This defines a bunch of functions on a ‘square’ object:

4 | csep-art-of-science-contest-2015-v2-for-web.nb

ns= Clear [square, bits, pos, color, sidelen, graphics]
square /: bits[sq_square] :=sq[[1]]
square /: pos[sq_square] :=sq[[2]]
square /: color[sq_square] :=sq[[3]]

Length[bits[sq]]-3
square /: sidelen[sq_square] := 2~ 2

square /: graphics[sq_square] := Graphics[{
{EdgeForm[Black], color[sq], Rectangle[pos[sq], pos[sq] + sidelen[sq] * {1, 1}]},

Text[Style[b‘its[sq] , FontSize » 20 » sidelen[sq]],
sidelen[sq]

pos[sql + ————— « {1, 13]}]
SetAttributes[graphics, Listable]
Example square:

niz= Clear[s]
s = square[{0, 1, 0}, {3, 4}, RandomColor[]]

ouf13)= square[{0, 1, 0}, {3, 4}, @]

ni14= Show[graphics[s], Frame -» True, ImageSize » 100]

Out[14]=

4

.0
3.0323436384.0

Child squares.

Each bitstring can generate 4 ‘child’ bitstrings by append 00, 01, 10, or 11. Each of these bitstrings
squares has a position based on the parent’s.

Here is a square for the bitstring “000” at position {0,0} with color Red:

niis= sq = square[{06, 0, 0}, {0, 0}, Red]
oufisl- square[{0, 0, 0}, {0, O}, m]

The possible suffixes:

ne= suffs = {{0, 0}, {1, O}, {0, 1}, {1, 1}}
ourie= {{0, 0}, {1, 0}, {0, 1}, {1, 1}}

Append each suffix to form the child squares:

n17= childbits = Table[bits[sq] ~Join~suf, {suf, suffs}]
ouwiz= {{0, 0, 0, 0, 0}, {0, 0, 0,1, 0}, {0,0,0,0, 1}, {60,0,0,1,1}}

Child squares’ positions are based on their parent position. They’re shifted over horizontally and then
shifted around based on their suffix.

csep-art-of-science-contest-2015-v2-for-web.nb | 5

sidelen[sq]

nie;- childpos = Table[pos[sq] + {1, 0} + xy, {xy, *»suffs}]
3 1 3 1
oure= {{1, 0}, {;a 0}, {1, ;}, {;, 5}}

For now, child colors are just lighter versions of the parent square:

nii9= childcolors = Table[Lighter[color[sq]], Length[suffs]]
oufi9= {H, W, W, W}

Create the children:

nizo= children = MapThread[square, {childbits, childpos, childcolors}];
Column[children]
square[{0, 0, 0, 0, 0}, {1, O}, m]
square[{0, 0,0, 1, 0}, {%, o}, m]
1
{0,0,0,0,1}, {1’ ;}’ .]

square|{0, 0, 0, 1, 1}, {%’ i}’ .]

square

[
out[21]= [
[

The ‘graphics’ function we defined for squares is listable, so can be called on a list of children. Here is
what the children look like:

ni2z;= Show[{graphics[{sq, children}]}, Frame -» True]

10F
08l
06
out[22]=

04l

02f

0.0l

6 | csep-art-of-science-contest-2015-v2-for-web.nb

Wrap into a function.

ni2s= makeChildren[sq_square] :=
Modu'l.e[{s, suffs, childbits, childpos, children, childcolors},
suffs = {{0, 0}, {1, 0}, {0, 1}, {1, 1}};
s = sidelen[sq];
childbits = Table[bits[sq] ~Join~suf, {suf, suffs}];

childpos = Table[pos[sq] + {1, 0} + xy, {xy, S . suffs}];
2

childcolors = Table[Lighter@color[sq], Length[childbits]];
children = MapThread[square, {childbits, childpos, childcolors}];
Return[children];

]

SetAttributes[makeChildren, Listable]

Example use:

nesi= initials = Table[square[IntegerDigits[i, 2, 3], {0, i}, RandomColor[]], {i, O, 7}1;
Column[initials]

square[{0, 0, 0}, {0, 0}, m
square[{0, 0, 1}, {0, 1}, [
square[{0, 1, 0}, {0, 2}, m
L, SQUAre[(0, 1,1}, (0,3}, m
square[{1, 0, 0}, {0, 4}, m
square([{1, 0, 1}, {0, 5}, m
square[{1, 1, 0}, {0, 6}, m
square[{1l, 1, 1}, {0, 7}, m

ne7= allSquares = NestList[makeChildren, initials, 2];

nies;= Show[graphics[allSquares], ImageSize -» 600]

.1,1,01,01 | {1,110 1,14,1 | {,1,1,1,1,0,1 | {1,1,1,1.1,1,1}

{.1,1,0,1,0,0} | {1,1,1,0,1,1,0} | {1,1,1,1,1,0,0} | {1,1,1,1,1,1,0}

{.1,1,0,0,0,1 | {1,1,1,0,0,1,1} | {1,1,1,1,0,0,1} | {1,1,1,1,0,1, 1}

{1.1,1,0,0,0,0} | {1,1,1,0,0,1,0} | {1,1,1,1,0,0,0} | {1,1,1,1,0,1,0}

csep-art-of-science-contest-2015-v2-for-web.nb | 7

{1,0,1,0,1,0,1 { {1,0,1,0,1,1,1} | {1,0,1,1,1,0,1} | {1,0,1,1,1,1,1}

{1,0,1,0, 1} {1,0,1,1,1}

{1,0,1,0,1,0,0} { {1,0,1,0,1,1,0} | {1,0,1,1,1,0,0} | {1,0,1,1,1,1,0}

{1,0,1,0,0,0,1} {1,0,1,0,0,1,1} | {1,0,1,1,0,0,1} | {1,0,1,1,0,1,1}

{1,0,1,0, 0} {1,0,1,1,0}

{1,0,1,0,0,0,0} { {1,0,1,0,0,1,0} | {1,0,1,1,0,0,0} | {1,0,1,1,0,1,0}

Out[28]=

1,0,1,0,1} 2

{0,1,1,0,1,0,0} | {0,1,1,0,1,1,0} [{0,1,1,1,1,0,0} | {0,1,1,1,1,1,0}

{0.1,1,0,0,0,1} | {0,1,1,0,0,1,1} | {0,1,1,1,0,0,1} | {0,1,1,1,0,1, 1}

{0.1,1,0,0,0,0} | {0,1,1,0,0,1,0} | {0,1,1,1,0,0,0} | {0,1,1,1,0,1,0}

{0,1,0,0,1,0,1} { {0,1,0,0,1,1,1} | {0,1,0,1,1,0,1} | {0,1,0,1,1,1,1}

{0,1,0,0, 1} {0,1,0,1, 1}

{0,1,0,0,1,0,0} | {0,1,0,0,1,1,0} | {0,1,0,1,1,0,0} | {0,1,0,1,1,1,0}

{0,1,0,0,0,0,1} | {0,1,0,0,0,1,1 | {0,1,0,1,0,0,1} | {0,1,0,1,0,1, 1}
{0,1,0,0, 0} {0,1,0, 1, 0}

{0,1,0,0,0,0,0} | {0,1,0,0,0,1,0} | {0,1,0,1,0,0,0} | {0,1,0,1,0,1,0}

{0,0,1,0,1,0,1} | {0,0,1,0,1,1,1} [{0,0,1,1,1,0,1} | {0,0,1,1,1,1,1}

8 | csep-art-of-science-contest-2015-v2-for-web.nb

{0,0,1,0, 1} {0,0,1,1, 1}
{0,0,1,0,1,0,0} | {0,0,1,0,1,1,0} | {0,0,1,1,1,0,0} | {0,0,1,1,1,1,0}
{0, 0, 1}
{0,0,1,0,0,0,1} | {0,0,1,0,0,1,1 | {0,0,1,1,0,0,1} | {0,0,1,1,0,1, 1}
{0,0, 1,0, 0} {0,0,1, 1, 0}
{0,0,1,0,0,0,0} | {0,0,1,0,0,1,0} | {0,0,1,1,0,0,0} | {0,0,1,1,0,1,0}

{0.0,0,0,1,0,1} | {0,0,0,0,1,1,1} | {0,0,0,1,1,0,1} | {0,0,0,1,1,1,1}

{0,0,0,0,1,0,0} | {0,0,0,0,1,1,0} | {0,0,0,1,1,0,0} | {0,0,0,1,1,1,0}

{0.0,0,0,0,0,1} | {0,0,0,0,0,1,1} | {0,0,0,1,0,0,1} | {0,0,0,1,0,1, 1}

{0.0,0,0,0,0,0} | {0,0,0,0,0,1,0} | {0,0,0,1,0,0,0} | {0,0,0,1,0,1,0}

Set opacity as function of “how close is 1/0 fraction to 50%?”

Now we decide how opaque to make a square, as a function of its fraction of 1’'s and 0’s. The idea is
that an equal proportion of 1’s and 0’s should result in an clear square (Opacity 0), whereas a bitstring
with all 1’s or all 0’s should be totally opaque (Opacity 1). This amounts to choosing a function that
takes the bitstring, computes the fraction of 1’s, and is 0 at 0.5 (50%) and 1 at 0 (0%) and 1 (100%).

csep-art-of-science-contest-2015-v2-for-web.nb | 9

neep= fabs[frac_] := 2 x Abs[frac - .5]

fcos[frac_] :

1
; (Cos[2 x frac] +1)

fentropy[frac_] :=

If[frac=0|| frac=1, 1, 1+ (frac«Log2[frac] + (1- frac) Log2[1- frac])]
Plot][

{fabs[f], fcos[f], fentropy[f]}, {f, O, 1},

PlotLegends -» "Expressions",

PlotLabel -» "Different opacity functions",

AxesLabel » {"frac of 1's", "opacity"}

Different opacity functions

opacity

1.0

08}
— fabs(f)

fcos(f)
fentropy(f)

outzz)= 06T
04r

0.2

LT 1. . 1 fracof1's
0.2 0.4 0.6 0.8

You can see that although the functions agree at 0, 0.5, and 1.0, they vary a little in their gray-levels in
between:

10 | csep-art-of-science-contest-2015-v2-for-web.nb

n@3- tab = Table[{b,

Sequence ee Table|
Graphics[{
EdgeForm[Black], Opacity[f[m]] , Disk[]
Lengtheb
}, ImageSize » 20],

{f, {fabs, fcos, fentropy}}]
}s
{b, IntegerDigits[Range[0, 2°-1], 2, 5]}];

TableForm[

Join[tab[;; 81, {"..."}, tab[-8 311,

TableHeadings » {None, {"bitstring", "fabs", "fcos", "fentropy"}},
TableDepth - 2,

TableAlignments - Center

1

Out[34]//TableForm=
bitstring

{06,0,0,0,0}

fcos fentropy

{6,0,0,0,1}
{6,0,0,1,0}
{0,0,0,1,1}
{0, » 0}

{0,

0
0 0
(0,0,1,0, 1}
0,1, 1, 0}
0

{6,0,1, 1,1}

{1,1,0,0, 0}

{1,1, 0, 0, 1}
{1,1, 0, 1, 0}
{1,1, 0,1, 1}
{1,1,1, 0, 0}
{1,1,1, 0, 1}

{1, 1,1, 1,0}

00000000 0000000 :
00000000 OO0
L JOIVIGIVIGIGIONGIGIGIVIGI VIV

{1, 1,1,1,1}

Fabs is a little darker, which makes the final image look more dramatic. But Shannon’s entropy is more
thematically fitting.

. Totalebits
nssi- opac[bits_] := fentropy[—————]
Lengthebits

csep-art-of-science-contest-2015-v2-for-web.nb | 11

Override the graphics function to use opacity instead of the parent’s color:

square /: graphics[sq_square] := Graphics[{
{
Opacity[opac[bits[sq]l]l],
Rectangle[pos[sq], pos[sq] + sidelen[sq] » {1, 1}]
1
Text [Style [bits[sq], FontSize » 20 x sidelen[sq]],

sidelen[sq]]
pos[sq] + —————— * {1, 1}, Background - White]
2

H

Show[graphics[allSquares], ImageSize -» 600]

{1,1,1,0,1,0,1) F{1,1,1,0,1, 1, 1}/ {1,1,1,1,1,0,) 1. 1.1.1.1.1.1

{1,1,1,0, 1} {1,1,1,1, 1}

{1,1,1,0,1,0,00 {1,1,1,0,1,1,00 {1,1,1,1,1,0,00 [{1,1,1,1, 11,0},

{1,1,1,0,0,0,1 {1,1,1,0,0,1,1 {1,1,1,1,0,0,1 [{1,1,1,1,0,1, 1},

{1,1,1,0, 0} {1,1,1,1, 0}
{1.1,1,0,0,0,0y {1,1,1,0,0,1,00 {1,1,1,1,0,0,0 {1,1,1,1,0,1,0}
{1.1,0,0,1,0,1 {1,1,0,0,1,1,1 {1,1,0,1,1,0,1} 5{1,1,0,1,1,1, 1}
{1,1,0,0, 1} {1,1,0,1, 1}
{1.1,0,0,1,0,00 {1,1,0,0,1,1,0p {1,1,0,1,1,0,0 {1,1,0,1,1,1,0}
{1,1, 0}
{1.1,0,0,0,0,1 {1,1,0,0,0,1,1} {1,1,0,1,0,0,1} {1,1,0,1,0,1, 1}
{1,1,0,0, 0} {1,1,0,1,0}
{1.1,0,0,0,0,0y {1,1,0,0,0,1,04 {1,1,0,1,0,0,0 {1,1,0,1,0,1,0}
{1.0,1,0,1,0,1 {1,0,1,0,1,1,1} {1,0,1,1,1,0,1} 5{1,0,1,1,1,1, 1}/
{1,0,1,0, 1} {1,0,1,1, 1}
{1.0,1,0,1,0,00 {1,0,1,0,1,1,00 {1,0,1,1,1,0,0 {1,0,1,1,1,1,0}
{1,0, 1}
{1.0,1,0,0,0,1 {1,0,1,0,0,1,1} {1,0,1,1,0,0,1} {1,0,1,1,0,1, 1}
{1,0,1,0, 0} {1,0,1,1,0}

{1,0,1,0,0,0,0} {1,0,1,0,0,1,0} {1,0,1,1,0,0,0} {1,0,1,1,0,1,0}

{1,0,0,0,1,0,1 {1,0,0,0,1,1,1} {1,0,0,1,1,0,1 {1,0,0,1,1,1,1}

{1,0,0,0, 1} {1,0,0,1, 1}

12 | csep-art-of-science-contest-2015-v2-for-web.nb

{1, 0, O}

{1,0, 0,0, 0}

{0,1,1,0, 1}

{0,1, 1}

{0,1,1,0,0}

{0,1,0,0, 1}

{0, 1, O}

{0, 1, 0,0, 0}

{0,0,1,0, 1}

{0, O, 1}

{0,0, 1,0, 0}

{0,0,0,0, 1}

{0, 0, 0, 0, 0}

{1,0,0,1,0}

{0,1,1,1, 1}

{0,1,1,1,0}

{0,1,0,1, 1}

{0,1,0,1,0}

{0,0,1,1, 1}

{0,0,1,1,0}

{0,0,0,1, 1}

{0, 0,0, 1, 0}

I

I

{

0

0

o

©

0

©

{0

0.0.0.0.0,0,0

,0,0,0,1,0,0}

,0,0,0,0,0, 1}

,0,0,0,0,0, 0}

,0,0,0,1,0, 1}

,0,0,0, 1,0, 0}

,0,0,0,0,0, 1)

o

Il

I

0

0

Y

0

0

0

o

,0,0,0,1,1,

,0,0,0,0,1,

,0,0,0,0,1,

,0,0,0,1,1,

,0,0,0,1,1,

,0,0,0,0,1,

0}

1

0}

csep-art-of-science-contest-2015-v2-for-web.nb | 13

Use as image mask

nizg= im = Import["IMG_0795-001.JPG"];
Thumbnail[im, 500]

out[39]=

nia0p= imrot = ImageRotate[im, Top -» Left];
Turn off the text of the bitstring:
n41:= square /: graphics[sq_square] := Graphics[{
Opacity[opac[bits[sq]]l],
Rectangle[pos[sq], pos[sq] + sidelen[sq] » {1, 1}]
1]
naz;= allSquares = NestList[makeChildren, initials, 6];
There are a lot of squares. Each square turns into 4 squares in the next “generation”, starting with 8
squares and lasting 7 generations.
n43= allSquares // Flatten // Length
outj43= 43 688

14 | csep-art-of-science-contest-2015-v2-for-web.nb

nj44p= Clear [x];
x[1] = 83

X[i_] :=4%x[i-1];
7

D ix[i]

i=1

outj47= 43 688

nj4gi= overlay =
Show[graphics[allSquares], Frame » False, AspectRatio » ImageAspectRatio[imrot]];

n49= Rasterize[overlay, RasterSize -» 200]

T

Out[49]=

csep-art-of-science-contest-2015-v2-for-web.nb | 15

nsop= imfinal = ImageCompose[imrot, overlay] // ImageRotate[#, Top » Right] &;
Thumbnail[imfinal, 500]

Out[51]=

nis2;= Export["art-csep-pearson-FROM-MMA-vEntropy-INTERMEDIATE.jpg",
imfinal, "CompressionLevel" - 0]

oufszl= art-csep-pearson-FROM-MMA-VEntropy-INTERMEDIATE. jpg

(Now add the numbers manually (I did it in Mac’s Preview.))

