
��������������������������
May 25, 2017

������� Clear["Global`*"]

My friend Dario says this is a Google interview question.

�����������������
You're in a dark room with n coins. You're told that there are m heads (and therefore n -m tails). You're

allowed to flip coins over if you want. The goal is to partition the n coins into 2 piles (not nec. w/ the

same number of coins) such that each pile has the same number of heads.

�������
With n = 10 coins, m = 6 of which are heads, you might simply split the pile into two equal halves and

hope that you get m /2 = 3 heads in each pile.

������� SeedRandom[100];
coins = RandomSample[ConstantArray[H, 6]~Join~ConstantArray[T, 4]]

������� {H, H, H, T, H, H, T, T, T, H}

������� partitions = TakeDrop[coins, 5]

������� {{H, H, H, T, H}, {H, T, T, T, H}}

You can see the partitions don’t have an equal number of heads. You weren’t feeling lucky.

So this scheme doesn’t have the property that for all sets of coinflips, it partitions the set into two sub-
sets which have the same number of heads.

Can we devise a better scheme?

��������
There are 3 cases to consider:
Case 1. If m⩵ 0, there are no heads, so we partition the coins into “the empty set” and “all the coins”,
which each has 0 heads, and you’re done.
Case 2. If m > n /2, flip all the coins. Now you have a situation with n coins and 0 <m ≤ n /2 heads,
which is Case 3.
Case 3. If 0 <m ≤ n /2, do this:

Partition the coins into an m-length list L1 and an (n -m)-length list L2. Let k denote the number of
heads in list L1, so the number of tails in L1 is (m - k). Since there are m heads total, if L1 has k heads
then L2 has m - k heads. Therefore, by flipping all L1’s coins, L1’s m - k tails become m - k heads,
matching L2’s m - k heads. So they have the same number of heads, so we are done.

�������

������� coins = {H, T, T, H, H, T, T}
n = Length@coins
m = Count[coins, H]

������� {H, T, T, H, H, T, T}

������� 7

������� 3

������� {p1, p2} = TakeDrop[coins, m]
newp1 = p1 /. {H → T, T → H}

������� {{H, T, T}, {H, H, T, T}}

������� {T, H, H}

�������� numH1 = Count[newp1, H]
numH2 = Count[p2, H]
numH1 ⩵ numH2

�������� 2

�������� 2

�������� True

Proof by 1 example.

�������������������n = �� ���� ���
First let’s extend the definition of the Not[] function to work on the symbols H and T (heads & tails):

�������� Clear[H, T]
H /: Not[H] = T;
T /: Not[T] = H;

�������� Not[H]

�������� T

�������� Not[T]

�������� H

�������� Not /@ {H, T, T, H, H}

�������� {T, H, H, T, T}

Here is a function that runs this algorithm:

2 ��� coins-in-the-dark2.nb

�������� f[list_] := Module{n = Length[list], m = Count[list, H]},

Which

m ⩵ 0, {{}, list}, (* if m⩵0, the trivial partition works *)

m > n 2, f[Not /@ list], (* if m>n2, flip everything and try again *)

True, {Not /@ Take[list, m], Take[list, -(n - m)]}
(* make (1..m) and (m+1..n) and flip the (1..m) set *)

It partitions the list into an m-length list and a (n -m)-length list, and flips the coins in the m-length list:

�������� f[{H, T, T, T, H, H, T}]

�������� {{T, H, H}, {T, H, H, T}}

If m==0, no heads. A boring partition will work:

�������� f[{T, T, T, T, T, T}]

�������� {{}, {T, T, T, T, T, T}}

If m>n/2, flip everything and run f[] again:

�������� f[{T, H, H, T, H, H, H}]

�������� {{T, H}, {T, H, T, T, T}}

Here is a function that checks if each set in the partition has the same number of heads:

�������� ok[partition_] := partition // Map[Count[H]] // Apply[Equal]

Same number of Heads is OK:

�������� ok[{{H, H}, {H, H, T, T, T}}]

�������� True

Different number of Heads is not OK:

�������� ok[{{H, H}, {H, T, T, T}}]

�������� False

Here are all the possible sets of 4 coin flips (order doesn’t matter):

�������� n = 4;
allCoins = Table[PadRight[ConstantArray[H, m], n, T], {m, 0, n}]

�������� {{T, T, T, T}, {H, T, T, T}, {H, H, T, T}, {H, H, H, T}, {H, H, H, H}}

Run f[] on all the flips and see if the resulting partition has equal numbers of heads:

coins-in-the-dark2.nb ���3

�������� TableForm[Table[
{c, f[c], ok[f[c]]}, {c, allCoins}],

TableHeadings → {None, {"flips", "partition", "OK?"}},
TableDepth → 2,
TableAlignments → Center]

�������������������

flips partition OK?
{T, T, T, T} {{}, {T, T, T, T}} True
{H, T, T, T} {{T}, {T, T, T}} True
{H, H, T, T} {{T, T}, {T, T}} True
{H, H, H, T} {{H}, {T, T, H}} True
{H, H, H, H} {{}, {T, T, T, T}} True

Here is a function that test whether f[] returns an OK partition for every possible set of n coinflips:

�������� test[n_] := Module[{allFlips},
allFlips = Table[PadRight[ConstantArray[H, m], n, T], {m, 0, n}];
AllTrue[allFlips, ok@*f]

]

We already saw that our algorithm works for n = 4 coins:

�������� test[4]

�������� True

Does it work for n coins, for n=1,...,100?

�������� AbsoluteTiming[
AllTrue[Range[100], test]

]

�������� {0.304978, True}

Nice!

4 ��� coins-in-the-dark2.nb

