
�����������������������������������
�������������

Justin Pearson
Oct 26, 2014

������� Clear["Global`*"]
SetDirectory[NotebookDirectory[]];

For simplicity, we’ll just chop up the tokens by whitespace and keep all the punctuation. Consequently
the word “Elizabeth” will be different from the word “Elizabeth,” (with a comma). Fine.

������� t = ExampleData[{"Text", "PrideAndPrejudice"}, "Words"]
Length[t]

�������

Chapter, 1, It, is, a, truth, universally, acknowledged,, that, a, single,

man, in, possession, of, a, good, fortune,, must, be, in, want, of, a,
wife., However, little, known, the, feelings, or, views, of, such, a,
man, may, be, on, his, first, entering, a, neighbourhood,, this, truth,
is, so, ⋯ 121457⋯ , from, the, city., With, the, Gardiners,, they,
were, always, on, the, most, intimate, terms., Darcy,, as, well, as,
Elizabeth,, really, loved, them;, and, they, were, both, ever, sensible,
of, the, warmest, gratitude, towards, the, persons, who,, by, bringing,

her, into, Derbyshire,, had, been, the, means, of, uniting, them.

����� ������ ���� ���� ���� ���� ���� ��� ��� ���� ��������

������� 121553

���������������������������

������� uniq = DeleteDuplicates[t];
Short[uniq]
n = Length[uniq]

�������������� {Chapter, 1, It, is, a, truth, universally, acknowledged,,
that, single, 13046, end., persuasion,, offence,,
reconciliation;, pollution, mistress,, city., terms., uniting}

������� 13065

Here’s an association to convert from words to their index in the unique-word list:

������� With[{rules = MapThread[Rule, {uniq, Range[n]}]},
ass = Association[rules];
(* much faster to apply an Ass than a list of Rules *)

unass = Association[Reverse /@ rules];
]

Short[ass]
Short[unass]

�������������� Chapter → 1, 1 → 2, It → 3, is → 4, a → 5, truth → 6, universally → 7,

13051, offence, → 13059, reconciliation; → 13060, pollution → 13061,

mistress, → 13062, city. → 13063, terms. → 13064, uniting → 13065

��������������� 1 → Chapter, 2 → 1, 3 → It, 4 → is, 5 → a, 6 → truth, 7 → universally,

13051, 13059 → offence,, 13060 → reconciliation;, 13061 → pollution,

13062 → mistress,, 13063 → city., 13064 → terms., 13065 → uniting

�������� ass /@ StringSplit@"Mary went into the house to get an axe"

�������� {581, 5237, 255, 24, 145, 57, 361, 268, Missing[KeyAbsent, axe]}

�������� unass /@ {581, 5237, 255, 24, 145, 57, 361, 268}

�������� {Mary, went, into, the, house, to, get, an}

The text of Pride and Prejudice, converted to word indices:

�������� x = ass /@ t;
Short[x]

��������������� {1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 10, 11, 12, 13, 14, 5, 15, 16, 17, 18, 12, 19, 14, 5, 20, 21,
22, 23, 121498, 1718, 84, 280, 707, 1839, 650, 2298, 14, 24, 12916, 1758,
735, 24, 3133, 2026, 119, 6841, 241, 255, 4875, 70, 82, 24, 1370, 14, 13065, 271}

2 ��� train_markov_chain_pride_and_prejudice-WEB.nb

�������� Grid[{t, x}〚1 ;; 40〛, Frame → All]

��������

Chapter 1
1 2
It 3
is 4
a 5

truth 6
universally 7
acknowledged, 8

that 9
a 5

single 10
man 11
in 12

possession 13
of 14
a 5

good 15
fortune, 16
must 17
be 18
in 12
want 19
of 14
a 5

wife. 20
However 21
little 22
known 23
the 24

feelings 25
or 26

views 27
of 14
such 28
a 5
man 11
may 29
be 18
on 30
his 31

��
Build the adjacency matrix for our discrete markov process:

train_markov_chain_pride_and_prejudice-WEB.nb ���3

�������� times = {};
A = SparseArray[{}, {n, n}];

(* Go through the text. For each word pair,
increment the appropriate entry in the adjacency matrix. *)

AppendTo[times, Now];
For[i = 1, i ≤ Length[x] - 1, i++, A〚Sequence @@ x〚{i, i + 1}〛〛++]
AppendTo[times, Now];

(* Normalize each row to sum to 1 to make it a true pmf. *)

Forj = 1, j ≤ Length[A], j++, A〚j〛 = N
A〚j〛

Total[A〚j〛]
;

AppendTo[times, Now];
Differences[times]

��������  12.5302 s , 1.10767 min 

�������� A

�������� SparseArray ��������� ��������� �����
����������� {������ �����} 

�������� MinMax[A]

�������� {0, 1.}

�������� ByteCount[A]

�������� 2217824

�������� next[s_] := RandomChoice[A〚ass[s]〛 → uniq]

�������� next["Mary"]

�������� very

4 ��� train_markov_chain_pride_and_prejudice-WEB.nb

�������� NestList[next, "Elizabeth", 200] // StringRiffle

�������� Elizabeth coloured, and grateful to Miss Elizabeth listened most abundantly
regret that the business, too! How strange it incumbent on Mr. Bennet
followed this comfort to himself to matrimony, in my old housekeeper, who
were engaged Mr. Bennet had once sit in distressed to the horror of talking,
my dear uncle had reached the study of importance which gave a young woman
whom it is really believed to have had. My father had been able," said
Bingley; what motives has no longer importune my godfather, and useless
to have no questions." "Thank you--but are over-scrupulous, surely. I saw
them to be much to remain the principal, if he was shocked. Lydia went by
the Little more gentlemanlike manner." Kitty, I am sure, was satisfied
with the words, or disgust of my family. Everybody said too hasty, sir,"
was involved in the honour you were violently caring no suspicion, the
former interference in all that would have been written with the account
and their kind as Mr. Bennet, beyond the same time for Jane," said she,
"as to wait till you speak to join in a week, and now, when they would
have another disappointment. Her answer, and sometimes convey much the

�������������������������������������
���������������������

We can use Mathematica’s built-in functions to train a discrete Markov process from our text.
Unfortunately, it’s quite slow for datasets of this size, so we use a subset of the text.

Here we use Mathematica’s “EstimatedProcess” function to estimate the weights of an n-state discrete

Markov chain:

�������� t2 = t〚 ;; 1000〛;
uniq2 = DeleteDuplicates[t2];
n2 = Length[uniq2];
With[{rules = MapThread[Rule, {uniq2, Range[n2]}]},

ass2 = Association[rules];
unass2 = Association[Reverse /@ rules];

];
x2 = ass2 /@ t2;
{time, dmp} = AbsoluteTiming[EstimatedProcess[x2, DiscreteMarkovProcess[n2]]];
time

�������� 6.471

Let’s run the discrete markov process for 200 timesteps:

train_markov_chain_pride_and_prejudice-WEB.nb ���5

�������� SeedRandom[1234];
RandomFunction[dmp, {1, 200}]["Values"] // Map[unass2] // StringRiffle

�������� 2 Mr. Bennet," said his second daughter employed in love with one of
three-and-twenty years at least." "Ah, you talk so! But it will not
pretend to be sure! A single man in vexing me. You take possession
before Michaelmas, and live to be for as Jane, nor half so odd a wife.
However little known the place, and that Netherfield is not go; and I
have none of her daughters married; its solace was less difficult to
introduce him." "I do not." "You are as he is a chaise and caprice,
that account, for my little information, and some one of her own. She
was so odd a wife. However little known the rightful property of her
daughters married; its solace was then disclosed in trimming a year come
into the earliest of them, and therefore you must know what I have no
such thing. She is let at least." "Ah, you must go, merely on that he
agreed with Mr. Bennet made no answer. "Do you not half so odd a single
man in trimming a woman of England; that Netherfield is let at least."
"Ah, you are as Jane, nor half so good-humoured as he suddenly addressed

���������������������������������
Wordcounts often follow a Zipf distribution: “The top 10% most-frequent words account for 90% of all
words.” Let’s see if Pride and Prejudice follows this trend.

Wikipedia:

https://en.wikipedia.org/wiki/Zipf%27s_law

Zipf’s law states that given some corpus of natural language utterances, the frequency of any word is
inversely proportional to its rank in the frequency table. Thus the most frequent word will occur approxi-
mately twice as often as the second most frequent word, three times as often as the third most frequent
word, etc.: the rank-frequency distribution is an inverse relation. For example, in the Brown Corpus of
American English text, the word “the” is the most frequently occurring word, and by itself accounts for
nearly 7% of all word occurrences (69,971 out of slightly over 1 million). True to Zipf’s Law, the second-
place word “of” accounts for slightly over 3.5% of words (36,411 occurrences), followed by “and”
(28,852). Only 135 vocabulary items are needed to account for half the Brown Corpus.[4]

Zipf’s law is most easily observed by plotting the data on a log-log graph, with the axes being log (rank
order) and log (frequency). For example, the word “the” (as described above) would appear at x =

log(1), y = log(69971). It is also possible to plot reciprocal rank against frequency or reciprocal fre-
quency or interword interval against rank.[1] The data conform to Zipf’s law to the extent that the plot is
linear.

6 ��� train_markov_chain_pride_and_prejudice-WEB.nb

�������� wordcounts = Counts[t] // Normal;
Short[wordcounts]

��������������� {Chapter → 61, 1 → 1, It → 198, is → 781, a → 1891, truth → 16, universally → 3,
acknowledged, → 7, 13050, offence, → 1, reconciliation; → 1,
pollution → 1, mistress, → 1, city. → 1, terms. → 1, uniting → 1}

��

�������� sortedwordcounts = wordcounts~SortBy~Last;

�������� sortedwordcounts /. {s_String ⧴ InputForm[s]} // Short

��������������� "----" → 1, "1" → 1, "10" → 1, "11" → 1, "12" → 1, "13" → 1, "14" → 1, "15" → 1,

"15th" → 1, "16" → 1, "17" → 1, "18" → 1, "18th," → 1, "19" → 1, "2" → 1,

"2." → 1, "20" → 1, "21" → 1, "22" → 1, "23" → 1, "24" → 1, 13023,

"you" → 937, "it" → 942, "for" → 982, "with" → 993, "he" → 1037, "as" → 1109,

"had" → 1127, "his" → 1168, "be" → 1191, "she" → 1306, "not" → 1337,

"that" → 1405, "I" → 1739, "in" → 1758, "was" → 1795, "her" → 1858,

"a" → 1891, "and" → 3240, "of" → 3552, "the" → 4047, "to" → 4051

(The numbers on the left are chapter numbers.)

��
Let’s plot log-rank and log-count as described above, so the word “to” would appear at x = log(1), y =

log(4051), “the” would appear at x = log(2), y = log(4047), etc.

train_markov_chain_pride_and_prejudice-WEB.nb ���7

�������� counts = Last /@ sortedwordcounts;
deccounts = Reverse@counts;
ranks = Range@Length@deccounts;
pts = {ranks, deccounts};
Short[pts]
ListLogLogPlot[pts,
AxesLabel → {"Word freq rank", "# times word appears in the text"},
PlotLabel → "The wordcount-vs-rank plot is somewhat linear.", ImageSize → 600]

��������������� {{1, 4051}, {2, 4047}, {3, 3552}, {4, 3240}, {5, 1891}, {6, 1858}, {7, 1795},
{8, 1758}, {9, 1739}, {10, 1405}, 13046, {13057, 1}, {13058, 1}, {13059, 1},
{13060, 1}, {13061, 1}, {13062, 1}, {13063, 1}, {13064, 1}, {13065, 1}}

��������

1 10 100 1000 104
Word freq rank

1

10

100

1000

times word appears in the text
The wordcount-vs-rank plot is somewhat linear.

Looks pretty linear in the middle, not so great at the ends. What’s up with the long tail -- all the words
that only appear once?

8 ��� train_markov_chain_pride_and_prejudice-WEB.nb

�������� Histogram[counts, "Log", "LogCount", AxesLabel →

{"wordcount (# times a word occurs)", "# of unique words w/ that wordcount"},
PlotLabel → "Half of the " <> ToString[Length@counts] <>

" unique words appear only once.\n(TOTAL # of words in P&P: " <>

ToString[Length@t] <> ")", ImageSize → 800]

��������

1 10 100 1000

1

10

100

1000

104

of unique words w/ that wordcount

Half of the 13065 unique words appear only once.

(TOTAL # of words in P&P: 121553)

A lot of words occur only once:

�������� Count[wordcounts, HoldPattern[_ → 1]]

�������� 7104

It is mainly due to us not erasing punctuation:

train_markov_chain_pride_and_prejudice-WEB.nb ���9

�������� Cases[wordcounts, HoldPattern[_ → 1]]

��������

1 → 1, rightful → 1, last?" → 1, Morris → 1, Michaelmas, → 1, week." → 1, name?" → 1,

"Bingley." → 1, single?" → 1, Single, → 1, tiresome! → 1, here?" → 1,
"Design! → 1, Nonsense, → 1, comes." → 1, grown-up → 1, beauty." → 1, cases, → 1,
newcomers. → 1, _us_ → 1, over-scrupulous, → 1, surely. → 1, preference." → 1,
can → 1, vexing → 1, least." → 1, "Ah, → 1, suffer." → 1, ⋯ 7049⋯ ,
cheap → 1, ought. → 1, her's → 1, profession. → 1, Bath; → 1, overcome, → 1,
retain → 1, dropt → 1, resentment; → 1, heretofore, → 1, arrear → 1, see. → 1,
sportive, → 1, He, → 1, pleasantry. → 1, instructions, → 1, liberties → 1,
abusive, → 1, end. → 1, persuasion, → 1, offence, → 1, reconciliation; → 1,

pollution → 1, mistress, → 1, city. → 1, terms. → 1, uniting → 1

����� ������ ���� ���� ���� ���� ���� ��� ��� ���� ��������

���

�������� LengthWhileAccumulate@deccounts, # < Length[t]  2 &

�������� 84

�������� Total@deccounts[[;; 84]]

�������� 60714

Wow, one could write half of Pride and Prejudice with only 84 words!

����������������������

�������� edist = EstimatedDistribution[counts, ZipfDistribution[ρ]]

�������� ZipfDistribution[0.838398]

The estimated distribution seems to line up well with the histogram of wordcounts:

10 ��� train_markov_chain_pride_and_prejudice-WEB.nb

�������� Show[Histogram[counts, {0.5, 11.5, 1}, "PDF"],
DiscretePlot[PDF[edist, x], {x, 0, 11}, PlotStyle → PointSize[Medium]], AxesLabel →

{"wordcount (# times a word occurs)", "frac of unique words w/ that wordcount"},
PlotLabel → "Zipf distribution fits the word-count PDF-histogram.",
ImageSize → 800]

��������

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

frac of unique words w/ that wordcount
Zipf distribution fits the word-count PDF-histogram.

With this, you can answer questions like: What’s the probability that a word occurs more than 100 times
in the text?

�������� Probability[X ≥ 100, X  edist]

�������� 0.0137952

Hopefully this matches the fraction of the unique words that occur more than 200 times:

��������

Count[counts, x_ /; x ≥ 100]

Length[counts]
// N

�������� 0.0105626

Not too bad.

�������� Speak["End of file."]

train_markov_chain_pride_and_prejudice-WEB.nb ���11

